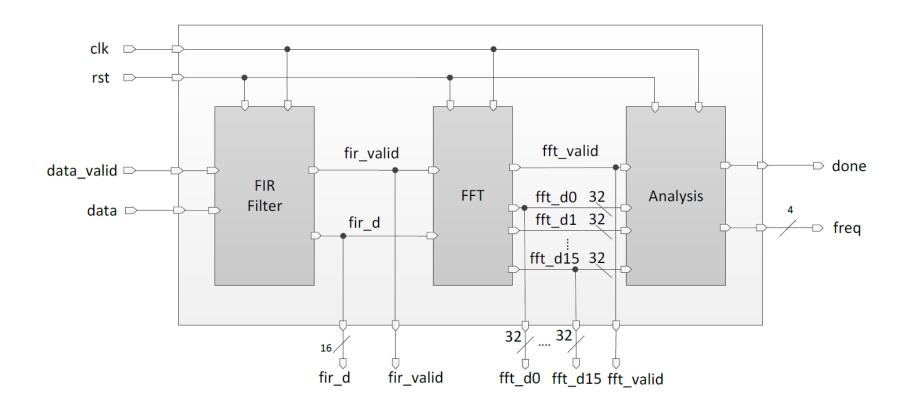


Summer Training Presentation

Student: Po-Jen Chen

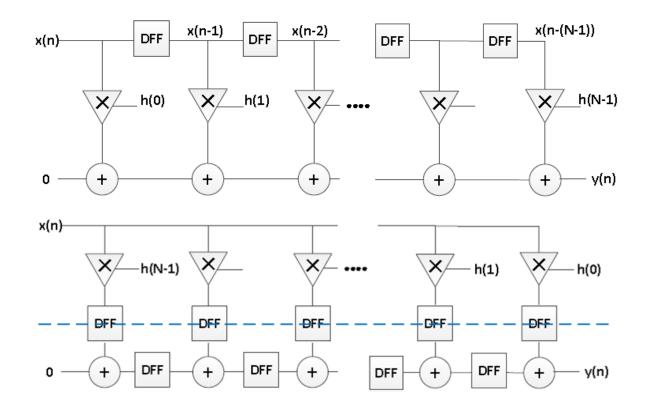
Advisor: Professor Tsung-Te Liu

Date: 2019.09.12

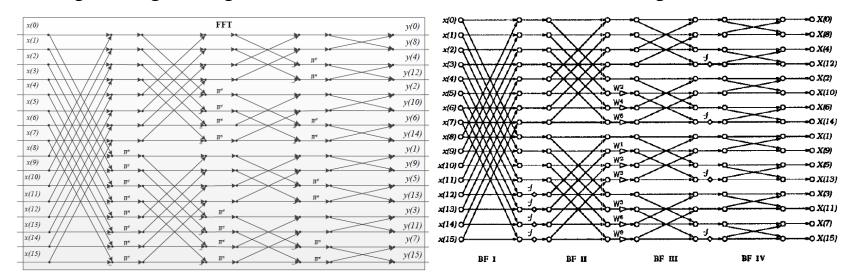


Outline

- ◆ Frequency Analysis System (FAS) Block Diagram
 - Finite Impulse Response Filter (FIR)
 - Fast Fourier Transform (FFT)
 - Analysis
- **♦** Implementation Result
- Conclusion


FAS Block Diagram

Finite Impulse Response Filter (FIR)


- Using transpose property to reduce the number of adders
- Pipelining multiplication and addition to shorten critical path

Fast Fourier Transform (FFT)

- ♦ Three complex multiplications are saved by using the right architecture. $(10 \rightarrow 7)$
- ◆ By using serial-to-parallel (S2P) buffer, I have about 15 cycles to operate FFT. However, 4 multipliers are applied in my FFT module.
- With appropriate organization, only two multipliers are needed. (7 × 4 multiplications in 15 cycles)
- Pipelining multiplication and addition to shorten critical path

Analysis

- ◆ Similarly, I use S2P buffer to collect the FFT outputs so that I have about 15 cycles to operate Analysis.
- In a single cycle, I compare two of the FFT outputs by using 4 multipliers. $(|y(i)|^2 = a_1^2 + b_1^2 > a_2^2 + b_2^2 = |y(j)|^2)$
 - The more registers to keep data, the fewer multipliers are needed.
- ♦ Less accuracy is needed in this stage.
- Pipelining multiplication and addition to shorten critical path

Implementation Result

	RTL	After synthesis	After DFT	Post-layout
Clock (ns/cycle)	-	4.4	4.4	4.4
Total simulation time (ns)	-	4734.4	4734.4	4734.4
Area (mm²)	-	0.332797	0.392863	0.654989
A*T value (ns*mm ²)	-	1576	1860	3101
Fault coverage	-	-	99.87%	99.87%

Conclusion

- Don't float any input/output port.
 - Clock-tree-synthesis can not be done successfully.
 - Remember to buffer all input/output ports
- The cost of multiplication is much bigger than that of others.
 - Try to decrease the number of multipliers using in all designs, especially large-bit multipliers
 - Appropriate organization can efficiently optimize the designs.
- P&R can be unpredictably time-wasting.
 - When any step in P&R can't go well, remember to look for the error or warning message hiding in the long log text.
 - But sometimes you would have know idea what the error message means.
 - Leave adequate time for back-end process