
Miller’s Algorithm in
Pairing-Based Cryptography

Po-Jen Chen[R08943023], Da-Wei Lin[R08943020]

Energy-Efficient Circuit and System Lab,
Graduate Institute of Electronics Engineering, National Taiwan University.

Abstract. This term project describes the behaviors of Miller’s algo-
rithm in pairing-based cryptography and how [1] implemented the pair-
ing computation efficiently with some mathematical skills. Lastly, we
proposed a modified Miller’s algorithm against side channel attack, the
biggest threat to cryptographic systems.

Keywords: Miller’s algorithm · Pairing-Based Cryptography · Tower
extension · Divisor · Side Channel Attack.

1 Introduction

The protocol solutions provided by pairing-based cryptography can only be
made practical if one can efficiently compute bilinear pairings at high levels of
security. Back in 1986, Victor Miller proposed in [4], [5] an iterative algorithm
that can evaluate rational functions from scalar multiplications of divisors, thus
allowing to compute bilinear pairings at a linear complexity cost with respect to
the size of the input. Since then, several authors have found further algorithmic
improvements to decrease the complexity of Miller’s algorithm by reducing its
loop length, and by constructing pairing-friendly elliptic curves and pairing-
friendly tower extensions of finite fields.

From 2001 to 2006, types of pairing cryptography start to develop, including
the Weil pairing, the Tate pairing, and the optimal Ate pairing in the following
equations 1 2 3. Those pairings are very complicated in math and non-trivial to
compute even by using Miller’s algorithm. Because pairings are computationally
expensive, making these computation faster is current research.

ê(P,Q) = fP (AQ)/fQ(AP ) (1)

ê(P,Q) = fP (AQ) (2)

ê(P,Q) = [fP (Q) · lP (φQ) · lP (−φ2Q)](q
k−1)/r (3)

Besides, Miller’s algorithm is used to compute fP (Q) and it consisted of
two major parts, Miller Loop and Final Exponentiation. The bottleneck in the
pairing computation is in the latter because of the extremely high exponent. By
implementing in the tower extensions of finite fields, we can do the power in



2 Po-Jen Chen, Da-Wei Lin

the lower finite fields and put them together therefore. In addition, side channel
attack (SCA), the biggest threats to cryptographic applications, needs to be
considered carefully. Thus, some dummy operations would be added to make
power information independent of the data being processed.

In this term project, we will review the cryptography in Section 2 and explain
Miller’s algorithm in Section 3. Then, we describe some practical skills in both
software and hardware in Section 4. After a brief introduction of how pairings
are implemented, we will give an approach against SCA in section 5. Finally, we
concluded the project in Section 6.

2 Cryptography Review

2.1 Bilinear Map

Roughly speaking, an asymmetric bilinear pairing can be defined as the non-
degenerate bilinear mapping,

ê : G1 ×G2 → G3 (4)

where both G1, G2 are finite cyclic additive groups with prime order r, whereas
G3 is a multiplicative cyclic group whose order is also r. Additionally, as it was
mentioned above, for cryptographic applications it is desirable that pairings can
be computed efficiently. When G1 = G2, we say that the pairing is symmetric,
otherwise, ifG1 6= G2, the pairing is asymmetric. And a bilinear map is a function
such that

ê(aP, bP ) = ê(P,Q)ab,∀P,Q ∈ G,∀a, b ∈ Z. (5)

With this map, we can establish relationship between cryptographic groups and
make Decisional Diffie-Hellman (DDH) easy in one of them in the process.

2.2 Divisor

The math behind why pairing functions work is quite tricky and involves
quite a bit of advanced algebra going even beyond what we have seen so far, but
we provide an outline as following. First of all, we need to define the concept of
a divisor, basically an alternative way of representing functions on elliptic curve
points. A divisor of a function basically counts the zeroes and the infinities of
the function. Take examples, let us fix some point P = (Px, Py), and consider
the following line function: f(x, y) = x − Px. The divisor is [P ] + [−P ] − 2[O]
(the square brackets are used to represent the fact that we are referring to the
presence of the point P in the set of zeroes and infinities of the function, not
the point P itself; [P ] + [Q] is not the same thing as [P + Q]) The reason is as
follows:

1. The function is equal to zero at P , since x is Px so x− Px = 0
2. The function is equal to zero at −P , since −P and P share the same x

coordinate



Miller’s Algorithm in Pairing-Based Cryptography 3

3. The function goes to infinity as x goes to infinity, so we say the function is
equal to infinity at O. Theres a technical reason why this infinity needs to be
counted twice, so O gets added with a multiplicity of −2 (negative because
its an infinity and not a zero, two because of double counting).

Now, let us consider a line function: ax+ by+ c = 0 which passes through points
P and Q. By the definition of elliptic curve group operation, the line also passes
through −P −Q and it goes to infinity dependent on both x an y. So the divisor
becomes [P ] + [Q] + [−P −Q]− 3[O].

For any two functions F and G, the divisor of F · G is equal to the divisor
of F plus the divisor of G, which means (F · G) = (F ) + (G), so for example
if f(x, y) = Px − x, then (f3) = 3[P ] + 3[−P ] − 6[O]; P and −P are triple-
counted to account for the fact that f3 approaches 0 at those points three times
as quickly in a certain mathematical sense.

3 Miller’s Algorithm

Take the Tate pairing for example, we want to compute ê(P,Q) = fp(Q)(q
12−1)/r1

where f is the function with divisor (fc) = c[P0]− [cP0]− (c− 1)[O] if we know
the base point P0 and the constant c such that P = c[P0] in the finite field Fq. In
Miller’s algorithm, Miller Loop computes fP (Q) and Final Exponentiation raise
the result to the power of (q12 − 1)/r whose details are showed bellow.

3.1 Miller Loop

The tricky problem in Miller Loop is that the base point and the constant
would not know from the input of the algorithm. Instead, we treat the input
point P as the alternative base point and use the group order r to replace the
constant. In other words, we have to find the rational function with divisor
(fr) = r[P ]− [rP ]− (r− 1)[O]. To explain why the alternative approach works,
we need to know how to find fa+b from fa and fb, which is also the major
equation in Miller Loop and shown in algorithm 1. Then, if we take fr+1 into
algorithm 1, we can notice that

fr+1 = fr · f1 ·
gr,1

gr+1,−r−1
= fr

gO,−P

gP,−P
= fr (6)

And also
fr+1 = f[O]+[P ] = f[P ] = f1 (7)

Therefore, we can adopt those alternative variables to realize the rational func-
tion with specific divisors.

The computations in Miller Loop consisted of two parts, elliptic curve point
multiplication (ECPM) and operations of rational function where Algorithm
2 shows the steps of Miller Loop. First, we focus on the point T who does

1 r is the curve order.



4 Po-Jen Chen, Da-Wei Lin

ECPM once to compute rP = O. That is, if the scanned bit ri is 1, do a
pair of elliptic curve point addition (ECPA) and elliptic curve point double
(ECPD); if the scanned bit ri is 0, do an ECPD afterwards. Second, the rational
function f simply follows the point T by using Algorithm 1. Besides, squaring
and multiplication in finite field are needed in this step.

Algorithm 1 How to compute fa+b

Input: fa, fb
Output: fa+b

1: (fa) = a[P ]− [aP ]− (a− 1)[O]
2: (fb) = b[P ]− [bP ]− (b− 1)[O]
3: (ga,b) = [aP ] + [bP ] + [−aP − bP ]− 3[O]
4: (g(a+b),−(a+b)) = [aP + bP ] + [−aP − bP ]− 2[O]

5: (fa) · (fb) ·
(ga,b)

(g(a+b),−(a+b))

= (a + b)[P ]− [aP + bP ]− (a + b− 1)[O]
= (fa+b)

Algorithm 2 Miller Loop

Input: P,Q, r =
∑l−1

i=0 ri2
i, where ri ∈ {0, 1}

Output: fP (Q)

1: T ← P ; f ← 1
2: for i from l − 2 to 0 do
3: f ← f2 · gT,T (Q);T ← 2T
4: if ri = 1 then
5: f ← f · gT,P (Q), T ← T + P

6: return f

3.2 Final Exponentiation

Normally, the size of the prime q is at least 254-bits so it is obviously difficult
to raise the result of Miller Loop to the power of (q12−1)/r in the large extension
finite field, showned in Algorithm 3. Besides, the exponent (q12 − 1)/r comes
from the elliptic curve we choose, also knowns as a Barreto-Naehrig elliptic
curve whose embedding degree is equal to 12. Since k = 12 = 22 · 3, the tower
extensions can be created using irreducible binomials only. This is because xk−β
is irreducible over Fq provided that β ∈ Fq is neither a square nor a cube in Fq.
Hence, the tower extension can be constructed by simply adjoining a cube or
square root of such element β and then the cube or square root of the previous
root. This process should be repeated until the desired extension of the tower
has been reached.



Miller’s Algorithm in Pairing-Based Cryptography 5

Algorithm 3 Final Exponentiation

Input: fP (Q)

Output: fP (Q)(q
12−1)/r

1: f ← f (q12−1)/r

2: return f

Accordingly, we decided to represent Fq12 using the tower extension, namely,
we first construct a quadratic extension, which is followed by a cubic extension
and then by a quadratic one, using the following irreducible binomials:

Fq2 = Fq[u]/(u2 − β), β = −5,

Fq6 = Fq2 [v]/(v3 − ξ), ξ = u,

Fq12 = Fq6 [w]/(w2 − v).

(8)

We first remark that the field extension Fq12 can be also represented as
a sextic extension of the quadratic field, i.e., Fq12 = Fq2 [W ]/(W 6 − u), with
W = w. Hence, we can write f = g + hw ∈ Fq12 , with g, h ∈ Fq6 such that
g = g0 + g1v + g2v

2, h = h0 + h1v + h2v
2 where gi, hi ∈ Fq2 for i = 0, 1, 2. This

means that f can be equivalently written as, f = g+ hw = g0 + h0W + g1W
2 +

h1W
3 + g2W

4 +h2W
5. We note that the q-power of an arbitrary element in the

quadratic extension field Fq2 can be computed essentially free of cost as follows.
Let b ∈ Fq2 be an arbitrary element that can be represented as b = b0+b1u. Then,

(b)q
2i

= b and (b)q
2i−1

= b with b = b0 − b1u for i ∈ N . Moreover, performing
squaring[3] is extremely efficiently in the cyclotomic subgroup of F×

q6 for q ≡ 1

(mod 6). Thus, with the identity W q = u(q−1)/6W , we can write (W i)q = γ1,iW
i

with γ1,i = ui(p−1)/6 for i = 1, · · · , 5. From the definitions given above, we can
compute fq as

fq = (g0 + h0W + g1W
2 + h1W

3 + g2W
4 + h2W

5)q

= g0 + h0W + g1W
2q + h1W

3q + g2W
4q + h2W

5q

= g0 + h0γ1,1W + g1γ1,2W
2 + h1γ1,3W

3 + g2γ1,4W
4 + h2γ1,5W

5

(9)

In this way, the equation above has a computational cost of 5 multiplications
in Fq and 5 conjugations in Fq2 . We can follow a similar procedure for computing

fq
2

and fq
3

, which are arithmetic operations required in the hard part of the final
exponentiation. For that, we must pre-compute and store the per-field constants
γ1,i = ui(p−1)/6, γ2,i = γ1,i · γ1,i and γ3,i = γ1,i · γ2,i for i = 1, · · · , 5.

4 Practical Skills in Software and Hardware

4.1 Modular Reduction

This subsection describes several optimizations for some operations over Fq2 .
In Algorithm 4, consider A,B,C ∈ Fq2 and C = c0 + c1u = A · B, then



6 Po-Jen Chen, Da-Wei Lin

c0 = a0b0−5a1b1 and c1 = (a0+a1)(b0+b1)−a0b0−a1b1. Hence, only three mul-
tiplications over Fq need to be computed, reducing one multiplication compared
to common operation over Fq2 . Thus, it may seem that three mod512 opera-
tions are necessary. However, we can keep the results of products mul256(s, t),
mul256(a0, b0), and mul256(a1, b1) in the 512-bit integers. After all additions
and subtractions are done, we can do a mod512 in order to get c0 and c1.

Algorithm 4 Optimized Multiplication over Fq2

Input: A,B ∈ Fq2 where A = a0 + a1u,B = b0 + b1u
Output: C ∈ Fq2 where C = c0 + c1u

1: s←addNC(a0, a1)
2: t←addNC(b0, b1)
3: d0 ←mul256(s, t)
4: d1 ←mul256(a0, b0)
5: d2 ←mul256(a1, b1)
6: d0 ←subNC(d0, d1)
7: d0 ←subNC(d0, d2)
8: c1 ←mod512(d0)
9: d2 ← 5d2

10: d1 ← d1 − d2
11: c0 ←mod512(d1)
12: return C ← c0 + c1u

In addition to optimization for multiplication over Fq2 , we can save lots of
costly checks after modulo addition or modulo subtraction when storing values
in 256-bits integers. With selected 254-bits prime q satisfying 7q < N , we can
safely add/subtract the operands without carry check in Algorithm 5.

Algorithm 5 Optimized Squaring over Fq2

Input: A ∈ Fq2 where A = a0 + a1u
Output: C = A2 ∈ Fq2

1: t←addNC(a1, a1)
2: d1 ←mul256(t, a0)
3: t←addNC(a0, q)
4: t←subNC(t, a1)
5: c1 ← 5a1

6: c1 ←addNC(c1, a0)
7: d0 ←mul256(t, c1)
8: c1 ←mod512(d1)
9: d1 ←addNC(d1, d1)

10: d0 ←subNC(d0, d1)
11: c0 ←mod512(d0)
12: return C ← c0 + c1u



Miller’s Algorithm in Pairing-Based Cryptography 7

4.2 Pipelined Scheme

In terms of the hardware implementation, some have implemented fully
pipelined 12-stage Fq2 multiplier, with Karatsuba method and Lazy Reduction
method, as shown in Fig. 1. By using iterative accumulator mechanism, it can
relax the data dependency resistance. Moreover, some would employ radix-4 uni-
fied division [2] for the Montgomery inversion operation, which usually takes 3l
cycles, results in at most l cycles.

Fig. 1. 12-stage fully pipelined Fq2 multiplier.



8 Po-Jen Chen, Da-Wei Lin

5 SCA Countermeasure

SCA, the biggest threat to PKC, focuses on attacking hardware physical
state like power or time which is the key dependent information. So chips need
additional hardware or special algorithm to avoid leakage information during op-
eration. Power consumption attacks are based on the observation that the power
consumed at a given time during cryptographic process is related to the instruc-
tion being executed and the data being manipulated. And power consumption
analysis may also enable to distinguish between instruction being executed. For
example, it might be possible to distinguish between point doubling and point
addition in Algorithm 6, thereby revealing the bits of the integer d. In order to
be resistant against SPA, the instructions performed during a cryptographic al-
gorithm should not depend on the data being processed, e.g. there should not be
any branch instructions conditioned by the data. It is easy to modify Algorithm
6 to achieve this goal, which shown in Algorithm 7.

Algorithm 6 Double-and-add Algorithm

Input: an integer d, and a base point P
Output: dP

1: Q← P
2: for i from l − 2 to 0 do
3: Q← 2Q
4: if di = 1 then Q← Q + P

5: return Q

Algorithm 7 Double-and-add Always Algorithm

Input: an integer d, and a base point P
Output: dP

1: Q[0]← P
2: for i from l − 2 to 0 do
3: Q[0]← 2Q[0]
4: Q[1]← Q[0] + P
5: Q[0]← Q[di]

6: return Q[0]

Based on the concept of Algorithm 7, we proposed a modified Miller’s al-
gorithm in 8, adding some dummy operations in Miller Loop to eliminate the
power message. However, high computational overhead leading to significant
performance loss is inevitable due to extra ECPA calculations with the enlarged
curve order. Furthermore, there is no need to modify Final Exponentiation be-
cause of the equivalent exponent at specific elliptic curve.



Miller’s Algorithm in Pairing-Based Cryptography 9

Algorithm 8 Modified Miller’s Algorithm

Input: points P,Q
Output: ê(P,Q)
Miller Loop:

1: T [0]← P ; f0 ← 1
2: for i from l − 2 to 0 do
3: f0 ← f2

0 · gT [0],T [0](Q);T [0]← 2T [0]
4: f1 ← f0 · gT [0],P (Q);T [1]← T [0] + P
5: f0 ← fri ;T [0]← T [ri]

6: return f

Final Exponentiation:

7: f ← f (q12−1)/r

8: return f

6 Conclusion

This term project describes the details of Miller’s algorithm from the view
point of implementation. For software designers who want to use pairing-based
cryptography in their works, try to use open sources as much as possible because
they are computationally expensive and non-trivial to compute. On the other
hand, for hardware implementation, ones should start from algorithmic level
instead of hardware architecture because many practical skills are derived from
math. Next, by implementing Miller Loop with our modified algorithm, pairings
will be effectively resistant to simple power analysis. Besides, as computing power
is improving, the security level should expend correspondingly, which also means
that we should reduce pairing operations or use embedded devices to make them
faster.



10 Po-Jen Chen, Da-Wei Lin

References

1. Beuchat, J.L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over barreto–naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing-Based Cryptography - Pairing 2010. pp. 21–39. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

2. Chen, Y., Lee, J., Liu, P., Chang, H., Lee, C.: A dual-field elliptic curve cryp-
tographic processor with a radix-4 unified division unit. In: 2011 IEEE Interna-
tional Symposium of Circuits and Systems (ISCAS). pp. 713–716 (May 2011).
https://doi.org/10.1109/ISCAS.2011.5937665

3. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptography –
PKC 2010. pp. 209–223. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

4. Miller, V.S.: Short programs for functions on curves. In: IBM THOMAS J. WATSON
RESEARCH CENTER (1986)

5. Miller, V.S.: The weil pairing, and its efficient calculation. Journal of Cryp-
tology 17(4), 235–261 (Sep 2004). https://doi.org/10.1007/s00145-004-0315-8,
https://doi.org/10.1007/s00145-004-0315-8


